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Abstract

In this paper, we explore the analytical relationship between reliability, risk,

and gambling, with respect to engineering decisions. In particular, we review the

tenets of rational gambling and their consequence: the expected utility theorem.

This theorem leads naturally to an optimization formulation the solution of which

identifies that decision alternative having the most favorable risk. We formalize the

relationship between risk and reliability, and thus the relationship between reliability

and gambling. The results given here offer principles from which analytical methods

can be developed. These normative principles can also be used as a litmus test for

evaluating the validity of new or existing methods and analyses.



1 Introduction

Engineers are professional gamblers, making risk encumbered decisions addressing the

design, development, deployment, and operation of technology. Yet, most engineers are

unacquainted with the tenets of gambling. In the sections that follow, we will review the

normative foundations of decision making, and we will expose the analytical relationship

that exists between reliability, risk, and gambling.

It is not our purpose to explore decision support methodologies; rather, our focus is

given to acquainting the reader with principles from which useful analytical methods can

be developed. These principles can also be used as a litmus test for evaluating the validity

of new or existing methods and analyses. The proofs of well know results are left to cited

references.

Our exposition of principles is intended for readers having expertise in reliability

engineering, and it is our hope that those readers who are unfamiliar with the relationship

between reliability, risk, and gambling can use this paper to “put a stake in the ground,”

and move forward towards a more complete understanding.

The purpose of reliability theory is to support improving the reliability of technology.

Reliability theory yields, of course, engineering models, and these models typically support

making engineering decisions. The modern definition of reliability is given in the language

of probability theory [bar75], quantifying the uncertainty of “lifetime”. Risk quantifies

uncertainty of the value associated with a particular decision alternative. Gambling is, for

our purposes, the act of making rational engineering decisions (typically with the support

of models derived from risk and reliability theory). Hence, gambling (in engineering) is
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necessarily an analytical exercise where one chooses the “most favorable” from among

available risk encumbered alternatives.

The words reliability, risk, and gambling are widely used in casual conversation, where

considerable license is allowed as to their respective meanings. We shall, however, require

precise terminology1.

• Reliability is the probability law on the lifetime of a particular device or system.

• Risk is the probability law on the anticipated monetary value2 of a particular de-

cision alternative.

• Gambling is the act of rationally choosing the “most favorable” from among all

available risk encumbered decision alternatives.

Each of these definitions asserts uncertainty ; hence, their analytical characterizations

necessarily derive from probability theory3. Inasmuch as our definition of gambling re-

quires rational behavior, our analytical characterizations are also built upon normative

principles (in the form of axioms) that we shall establish.

Observation 1 Gambling is an exercise in optimization, requiring an objective function

1There are a great many stylized definitions of risk. In engineering application, for example, risk is

often characterized as the probability of some undesirable event. In this paper, we employ the definition

of risk prefered by most economists [mar˙87]; a bit of careful thought will reveal that this definition

readily subsumes most characterizations of risk appearing in the engineering literature.
2Generally, it is possible for this value to be negative.
3Additivity (more specifically countable–additivity) of measure is essential in order to avoid pitfalls

such as arbitrage.
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accompanied by constraints. This objective function must be formulated, functionally, in

terms of risk. In engineering applications, risk is often written as a function of reliability.

Historically, the reliability literature has given much attention to understanding un-

certainties associated with the anticipated performance of technology. Whether arising

as decisions addressing design or operation, gambling is an inescapable activity of the

engineering endeavor4; yet, the reliability literature is largely disconnected from this ac-

tivity. The connection between technology performance (i.e., reliability) and engineering

decisions (i.e., gambling) is made through risk – the characterization of value under un-

certainty. Thus, a hierarchy is established for engineering decisions: In order to quantify

gambling, one must first quantify risk; in order to quantify risk, one often quantifies

reliability.

2 Tenets of Gambling

The tenets of gambling are normative and thus axiomatized. The axiomatic framework

that we present is not new; our exposition summarizes well–known results that have been

reported broadly in the mathematics and mathematical economics literatures. The origins

of our exposition can be credited to von Neumann and Morgenstern [von47].

We shall review the axioms defining rationality and their consequence – the expected

utility theorem – and comment on their appropriateness for application to engineering 5.

4Nearly all engineering decisions must address value in the presence of uncertainty.
5There are several alternative axiomatic formulations leading to expected utility theorems, see for

example [sav54], similar to von Neumann – Morgenstern. While we accept von Neumann – Morgenstern,
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It is important to recognize that the expected utility theorem provides the basic

principle on which all decision/risk theoretic methods are based. The theorem guarantees

that, for a rational gambler, there exists a function (unique up to affine transformations)

that will induce a measure assigning a numerical value to each risk encumbered decision

alternatives such that preferences among alternatives follows a numerical ordering. A

gambler who violates any of the underlying axioms is said to be irrational.

The expected utility theorem is essential because it provides an assessment of value

based on ordinal preferences. The von Neumann – Morgenstern axioms [von47] establish

that the consequence of any decision is a (possibly negative) reward, mapped into a

common unit of exchange (e.g., money). In our discussions, we will connect reward

(value) with “physics” (reliability).

Consider a gambling opportunity where a gambler must select a single alternative

from among the available alternatives, where A is the set of indices for the alternatives6.

Without loss of generality, let A = [a, b] ⊂ R be a compact interval on the real line

containing the point 0. Thus, A a closed and bounded set containing all possible dollar

rewards associated with a gambling opportunity. Here, b is the maximum possible reward

and 0 the status quo – in practice, gambling alternatives take only finite values.

The risk associated with a particular gambling alternative is defined as the cumula-

tive probability distribution function of that alternative’s reward. That is, each decision

alternative α ∈ A has a corresponding reward distribution function Fα(·) ∈ D(A). Here,

other axiomatic formulations would be equally acceptable for our purposes.
6The index set A must contain at least two alternatives. When there are exactly two alternatives, the

gambling opportunity is a take it or leave it bet.
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elements of D(A) are right-continuous, non-decreasing functions mapping A into the unit

interval (i.e., all distributions having support that is a subset of A). For each decision

alternative there is a probability law (i.e., distribution) governing the amount of reward

to be gained by selecting that alternative.

Recall that the objective of gambling is to select from among all available alternatives

that alternative having the most favorable risk; that is, to choose the alternative having

the most preferred reward distribution F ∗α ∈ D(A). The expected utility theorem and its

supporting axioms [pup91] offer a foundation for building methodologies that accomplish

this objective.

Axiom 1 (Weak Ordering) There is a preference relation < among the elements of D(A)

that is complete and transitive.

That is, a gambler (engineer) comparing any two alternatives (reward distributions)

should prefer one over the other7, and his preferences among all reward distributions

are transitive. It is argued (and we agree) that transitivity is characteristic of rational

behavior. Transitivity reflects self–consistency8.

Axiom 2 (Continuity). For every set F ∈ D(A) the sets {G ∈ D(A) : G < F} and

{G ∈ D(A) : F < G} are closed in the topology of weak convergence.

7Weak orderings allow indifference among alternatives, i.e., preferences are not necessarily strict.
8However, self–consistency is not necessarily easily achieved. If, for example, you were given graphs

of the reward distributions for, say 300, alternatives of a given gambling opportunity, arranging these

graphs in the order of your preference for the alternatives could be quite difficult – even though these

distributions carry complete information on the uncertainty associated with the gambling opportunity.
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That is, for any sequence of distributions {F1, F2, ...} ∈ D(A) that converges at all

points of continuity to a distribution F it is required that: (1) If each Fn is preferred to

G, then F is preferred to G, and (2) if G is preferred to each Fn then G is preferred to F .

It is argued that rational behavior does not allow one to exclude the limiting distribution

F from our preference ordering.

Axiom 3 (Independence) For all F,G,H ∈ D(A) and all λ ∈ [0, 1], F < G implies

λF + (1− λ)H < λG+ (1− λ)H.

The normative appeal of this axiom lies with its interpretation under compound lot-

teries, where ones preferences within a given lottery should be independent of previous

lottery outcomes. Generally, this axiom asserts that, if reward distribution F is pre-

ferred to distribution G, then this preference is unchanged over mixtures of F and G,

respectively, with a third distribution H.

Theorem 1 (Expected Utility Theorem.) Let < be a binary relation on D(A). There

exists a continuous function u : A → R (unique up to affine transformations) such that

F →
∫
A u(x)dF (x) represents < if and only if Axioms 1, 2, and 3 are satisfied.

Observation 2 Clearly, utility is a function that separates points in the set of distribu-

tion functions having support in A. The expected utility theorem asserts that, when the

three axioms defining rational behavior are satisfied, there exists a function u (the utility

function) that can be used to reveal one’s preferences among risk encumbered alternatives.

Decisions (gambles) are made by individuals [haz˙96] (not groups)9; hence, utility is

9The interactions among a group of individuals, who’s respective decisions are influenced by the

decisions of other group members is the focus of game theory.
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specific to an individual gambler at the epoch of a decision10. The utility function first

appeared in the literature in [ber89]; however, it was not until [von47] that utility was

axiomatized.

Figure 1: Hypothetical utility function of a risk averse gambler.

Figure (1) shows the graph of a hypothetical utility function, revealing how a gambler

values money at the epoch of a hypothetical gambling opportunity. Because the utility

function is unique up to affine (linear) transformation, utility separates risk encumbered

alternatives independent of the monetary units chosen. Note that, in this example, the

gambler holds a diminishing marginal value for money and a sharp distaste negative

wealth. There are numerous well–documented procedures for capturing an individual’s

utility function; we shall not address them here.

10As is revealed by Arrow’s Impossibility Theorem [arr], group utility functions cannot in general be

constructed.

7



Gambling boils down to the following basic idea: Beginning with a utility function

and a set of reward distributions associated with risky decision alternatives, search among

the alternatives for the one having the greatest expected utility. That is , for each α ∈ A

there is a unique reward distribution Fα ∈ D(A); the most favorable alternative α∗ is

determined by

α∗ = arg max
α∈A

∫
A
udFα, (1)

s.t.

Fα ∈ D(A).

Clearly, α∗ need not be unique.

It is straightforward to develop an alternate formulation of (1) that provides additional

insight into rational gambling. It follows as corollary [von47] to the expected utility

theorem that u is continuous and nondecreasing. Hence, u induces a measure on (R,B).

Further, since each element of D(A) is a distribution with compact support A, expected

utility can be expressed through a change of measure via integration by parts as

∫ b

a

udFα = u(b)−
∫ b

a

Fαdu,∀Fα ∈ D(A).

The integral
∫ b
a
Fαdu, Fα ∈ D(A), measures risk Fα (with respect to a gambler’s

utility u for money) for a particular alternative α ∈ A in a gambling opportunity. It now
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follows that optimization formulation (1) can be rewritten as

α∗ = arg min
α∈A

∫ b

a

Fαdu, (2)

s.t.

Fα ∈ D(A).

Formulation (2) reveals that a rational gambler will, when presented with the alternatives

of a gambling opportunity, search for that alternative presenting the least measure of risk.

The shape of a gambler’s utility function reflects his appetite for risk: when u is

concave over A, a gambler is said to be risk averse; when u is convex over A, he is said to

be risk perverse; when u is linear over A, he is said to be risk neutral. It is often the case

that the alternatives of a gamble are such that the reward interval A is sufficiently small

that u becomes (approximately) linear; in such case, u induces Lebesgue measure. Under

Lebesgue measure (i.e., risk neutrality), optimization formulations (2) and (1) seek an

alternative having the greatest expected reward11.

3 The Relationship Between Risk and Reliability

We now focus our attention on the relationship between risk and reliability. Costs and

revenues associated with engineering decisions cannot be predicted with certainty; hence,

gambling opportunities frequently arise in the design and/or operation of a device or

system. Clearly, risk (probability law on the value of an alternative) is defined only at

11Linear utility is commonly assumed in the formulation of Markov decision processes and other stochas-

tic optimal control paradigms where the reward interval associated with control policy is small.
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Figure 2: Hypothetical utility function with a risk neutral reward interval.

the epoch of decision in a gamble, whereas reliability (the probability law on device or

system lifetime) reflects temporal behavior; the connection between these two laws is

revealed through certain stochastic processes underlying them both.

In our discussions, it is unnecessary to distinguish between devices and systems (a

device may be thought of as a system consisting of a single element); hence, we will enlist

the word “system” when referring anything that might degrade and/or fail. We shall, for

any particular system, define a state process. This stochastic process captures not only

the physical state of the system but also the random environment (i.e., thermodynamic,

electromagnetic, economic, etc.) in which it operates. Thus, the state process is particular

to any maintenance policies, control laws, financial strategies, regulatory restrictions, etc.

that may in part govern system operation. In general, the state process may also capture
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the design, development, and deployment disposition of a system over time12. Thus, for

any gambling opportunity α ∈ A, there is a system state process Xα = {Xα(t); t ≥ 0}

defined on the probability space (Ωα,Fα, Pα)13. Here, Xα(t) : (Ωα,Fα) 7→ (Rn,B(Rn), t ≥

0. In practical modeling scenarios, we typically regard the trajectories of Xα to be of

bounded variation almost surely.

The physics captured by Xα is mapped to reward through a reward function rα :

((Rn × R+),B((Rn × R+))) 7→ ((R × R+),B((R × R+))). Here, rα(x, t), x ∈ Rn, t ≥ 0

is the (possibly negative) rate of reward received under gamble alternative α when the

system is in state x at time t. We shall allow rα to include any discounting directing

the time value of money. We shall impose the practical restrictions that rα be bounded,

of finite variation, and vanishing beyond some finite time; hence, rα is integrable. With

Yα(t) taken as the total reward accumulated under alternative α by time t, we have that

Yα(t) =

∫ t

0

rα(Xα(s), s)ds,

and

lim
t→∞
|Yα(t)| <∞.

It now follows that value of alternative α is given by

Vα = lim
t→∞

Yα(t) =

∫ ∞
0

rα(Xα(s), s)ds, (3)

12System state processes are typically very difficult to analytically characterize.
13It is not necessary that the various alternatives of a gamble to be defined on the same probability

space.
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and the risk associated with α is

Fα(v) = Pα{Vα ≤ v} = Pα{
∫ ∞
0

rα(Xα(s), s)ds ≤ v}. (4)

Observation 3 For a particular alternative of a gambling opportunity, where a system

operates within an alternative–specific (random) environment, equation (4) gives the re-

lationship between risk and the evolution of system state. One practical implication of

this relationship is that risk associated with technology must incorporate lifecycle reward

– from the begining of system design onward.

We note that equation (4) does not provide a direct relationship between system

reliability and risk. In order to establish this relationship, we must first formalize the

relationship between system state and system reliability.

Let B ⊂ B(Rn) denote the set of states where the system under consideration is

operational. With 1B(·) taken as the indicator function on the set B, it is clear that

Eα(1B(Xα(t)) = Pα{Xα(t) ∈ B} is the probability that the system is operational at time

t. We shall refer to the stochastic process Zα = {1B(Xα(t)), t ≥ 0} as the reliability

process. In situations where B is an absorbing state (e.g., the system cannot recover from

failure), we have that Tα = inf{t ≥ 0; 1B(Xα(t)) = 0} is the system lifetime and Rα(t) =

Pα{Tα > t} = Eα(1B(Xα(t))) is the system reliability. When B is not an absorbing state,

Eα(1B(Xα(t))) gives the system availability at time t, and limt→∞Eα(1B(Xα(t))) is called

the limiting availability.

Observation 4 The usefulness of Zα arises because it is typically not possible to directly

observe the state process Xα. However, it is often feasible to determine, for all t ≥ 0,
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whether or not a system is in a operational state – in which case Zα is easily observed.

Thus, the reliability process Zα offers a coarse surrogate for the complete characterization

of system state given in Xα.

In practice, the functional relationship between Zα and value can be difficult to estab-

lished and requires the introduction of a filtered probability space. Consider the filtered

probability space (Ωα,Fα, {Fα(t); t ≥ 0}, Pα) which is our usual probability space aug-

mented with the filtration {Fα(t); t ≥ 0} to which Zα will be adapted. Here, {Fα(t); t ≥ 0}

is a collection of sub–σ–algebras of Fα such that Fα(s) ⊂ Fα(s + t),∀s, t ≥ 0, and

Fα(∞) = limt→∞ Fα(t) ⊂ Fα. Here, {Fα(t); t ≥ 0} is the (stochastic) history14 of the

the reliability process Zα, with Fα(t) = σ({1B(Xα(u);u ≤ t}) is the sub–σ–algebra gener-

ated with Zα truncated to t. Hence, we have that Fα(∞) = σ(Zα) is the σ–algebra (i.e.,

event set) generated by the reliability process.

For t ≥ 0, let GYα(t) be the distribution of total accumulated reward under alterna-

tive α by time t. We now formulate the relationship between accumulated reward and

reliability as follows:

GYα(t)(y) = Pα{Yα(t) ≤ y} = Eα(Pα{Yα(t) ≤ y}|Fα(t)). (5)

That is, the distribution of the total reward, under alternative α, accumulated by time t

depends on the history of the reliability process Zα up to and including time t. It now

follows from equation (3) and bounded convergence theorem that the relationship between

14The filtration {Fα(t); t ≥ 0} captures observable information associated with system dynamics.
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risk Fα and reliability is given by

Fα(y) = lim
t→∞

GYα(t)(y)

= Eα( lim
t→∞

Pα{Yα(t) ≤ y}|Fα(t)}). (6)

Note that in equation (6), for every t ≥ 0, each version of Pα{Yα(t) ≤ y}|Fα(t)} is a

random variable and thus, almost surely,

lim
t→∞

Pα{Yα(t) ≤ y|Fα(t)} = Pα{Vα ≤ y|Fα(∞)}.

It now follows that

Fα(y) = Eα(Pα{Vα ≤ y|Fα(∞)})

= Eα(Pα{
∫ ∞
0

rα(Xα(s), s)ds ≤ y|σ(Zα)}). (7)

Equation (7) reveals the functional relationship between risk, system state, and reliability.

4 Gambling

We now revisit gambling, where our objective is to select the alternative α∗ having the

most favorable (i.e., minimum measure with respect to utility of) risk. Taking optimiza-

tion formulation (2) and equation (7) together, we have that

α∗ = arg min
α∈A

∫ b

a

Fα(y)du(y), Fα(y) ∈ D(A)

= arg min
α∈A

∫ b

a

Eα(Pα{
∫ ∞
0

rα(Xα(s), s)ds ≤ y|σ(Zα)})u(dy) (8)
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Observation 5 Equation (8) establishes the relationship between reliability, risk, and

gambling. It shows that, when presented with a gambling opportunity having decision al-

ternatives indexed by the set A, the most preferred alternative α∗ ∈ A, holds the minimum

risk according to utility measure u, where risk Fα∗ is functionally determined by that alter-

native’s state Xα∗(t) (and subordinately it’s reliability process Zα∗) directing the dynamics

of reward rα∗(·, t).

Equation (8) is not a panacea; it does not reveal any specific gambling (decision sup-

port) methodology. Equation (8) simply establishes the relationship between reliability,

risk, and gambling; useful gambling methodologies will reflect this relationship. Typi-

cally, much effort is required to capture (or even approximate) probability law on any of

the stochastic processes that govern system dynamics. Reward functions, too, are often

difficult to “nail down”. Depending upon the sophistication of system dynamics and the

reward function, computation of the integrals appearing in equation (8) can be very chal-

lenging. Finally, when the cardinality of A the index set of decision alternatives is large

(large, here, can be a modest finite number), optimization over A can become especially

difficult.

The challenges of engineering reliable systems are many and great. Specifically the

level of difficulty associated with developing high–fidelity domain models underlying any

gamble cannot be overstated. Yet, equation (8) is a direct and unavoidable consequence

of rational behavior and, so long as Axioms 1, 2, and 3 are accepted, it will remain so.
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