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Prologue:

I make my living on the intersection 
of Reliability, Risk, and Gambling.

Engineers are professional gamblers.

My research is focused on computational methods that 
support gambling (identifying engineered alternatives 
having the most favorable risk).

I am an engineer (not a philosopher, scientist, or 
mathematician). 
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Point-defect mapping under net-shaping.

{εV (x);x ∈ V ⊂ R+}

1 defect at x

0 otherwise
εV (x) =

V{



Stochastic intensity of the point-defect probability law.

P (NV (B) = i) ∀B ∈ B(V )
i ∈ Z+

NV (B) =
∑

x∈B

εV (x)

Predictive Model:



net-shaping

material removal

Which process
offers the more
preferred risk?

or



V1 V2

α = 1, 2

Value        is a random variable that is functionally 
related to the defect (stochastic) point process.

Vα

Vα = g(·, NVα)



Present value of the
reward marked point process.

discount function

FV (x) = P{V ≤ x}

FV is called risk (a definition seemingly 
unfamiliar or misunderstood by all 
too many engineering professionals).

f : R× R+ → R

V =
∞∑

n=0

f(Xn, Tn)



Take-It-or-Leave-It Wagers

status quo

alternative allocation of resources

FVB (x)

FVY (x)

x
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{(XB
n (ωB), TB

n (ωB));n ∈ Z}

{(XY
n (ωY ), TY

n (ωY ));n ∈ Z}



The Alternatives 
of a Wager

Set of possible rewards.

Note that the alternatives (marked point processes) associated 
with a wager need not be defined on a common probability 
space.

A = [a, b] ⊂ R, 0 ∈ A

is the set of distributions having support in D(A) A

Alternative     has risk  α Fα ∈ D(A)



Tenets of Wagering

When taken axiomatically, these tenets of normative wagering 
together with the axioms of probability measure define rational.

(Weak Ordering)  There is a preference relation     among 
the elements of          that is complete and transitive.

!
D(A)

(Continuity)  For every set                    the sets
                                   and 
are closed in the topology of weak convergence.

F ∈ D(A)
{G ∈ D(A) : G ! F} {G ∈ D(A) : F ! G}

(Independence) For all                           and all                ,
             implies                                                     .

F,G, H ∈ D(A)
F ! G

λ ∈ [0, 1]
λF + (1− λ)H ! λG + (1− λ)H



Caution!  This is an ordinal result.  It can only reveal preferences among 
alternatives - not “how much preferred” one alternative is to another.

Theorem

Let    be a binary relation on          .  There exists a continuous 
function                  (unique up to affine transformations) such that
 
                     represents      if and only if the normative axioms

of wagering are satisfied.

! D(A)
u : A→ R

!F !→
∫

A
udF

Separating Points in D(A)



Wagering is all about assigning value to each alternative 
and selecting the alternative having the most favorable risk

Engineering meets Wagering

In order to wager in engineering, we must get in contact with 
the physics!

α∗ = argmax

∫

A
udFα

Engineering (e.g., design, operation, etc.) is all about 
synthesizing alternatives from which to choose.  These 
alternatives form a family of processes                            .{Y α

t ; t ∈ R+},α ∈ I



The physics: enter reliability, etc.

Rational wagering requires that we connect value with physics. 

(Ω,F)

ω

01reliability =

A

((Rk × R+), (Bk ⊗ B+))

Real World
System State

is the state process{Y α
t ; t ∈ R+}

Y α
t (ω)

1A(Y α
t (ω))

E[1A ◦ Y α
t ]



and are obviously dependent.{Y α
t ; t ∈ R+}{(Xα

n , Tα
n );n ∈ Z+}

(Ω,F)

ωA

((Rk × R+), (Bk ⊗ B+))

((R× R+), (B ⊗ B+))

((R× R+), (B ⊗ B+))

((R× R+), (B ⊗ B+))

(Xα
1 (ω), Tα

1 (ω))

(Xα
2 (ω), Tα

2 (ω))

(Xα
3 (ω), Tα

3 (ω))

Y α
t (ω)



So - here’s the drill for wagering:

2) At the moment prior to selecting an alternative, determine your 
“unique” u : A→ R

1) Go find the risk      for each alternative allocation of resources Fα α

3) Compute                              for each  Eα[u] =
∫

A
udFα α

4) Choose the alternative α∗ = argmaxαEα[u]

What could be simpler? (Well - almost anything!)



What’s the big deal, here?
Why isn’t wagering easy?

Because the risk of an alternative is the distribution on the present 
value of a random marked point process, one must use the 
probability law (i.e., all finite joint distributions) on                           
in order to compute the corresponding risk.  This is a staggering 
complicated computation. 

{(Xα
n , Tα

n );n ∈ Z+}

Value of an alternative                                  is all about money - the 

technology is not explicitly represented, a disconnect with engineering.

Vα =
∑

n

f(Xα
n , Tα

n )

High-stakes wagers are never concerned with repeatable 
experiments.  Hence, you cannot appeal to an ergodic theorem to 
capture the probability laws on alternatives.  These are one-and-off 
bets!



Bad problem :-(

You will never have access to the probability laws on 
processes underlying a practical wager. Sorry.

Pleasant observation :-)
No one said that you have to explicitly know the risk of 
each alternative in order to select that alternative having 
the most favorable risk.



Strategy

Connect with the engineering necessary to synthesis alternatives.

Ai

Aj

Fj
Fi !

D(A)

Appeal to the separation theorem to test              .Ai ! Aj

Capture each alternative’s risk within some subset;
                          .  Here, the      collection of distributions will be 
much simpler to characterize than the unique distribution      .  
Fα ∈ Aα ⊂ D(A) Aα

Fα



Separation of sets in         . D(A)

Suppose that the risk                                with       compact.Fi ∈ Ai ⊂ D(A),∀i Ai

umin
i = min

F∈Ai

{
∫

A
u(x)dF (x)} umax

i = max
F∈Ai

{
∫

A
u(x)dF (x)}

∃Ii = [umin
i , umax

i ] such that
∫

udFi ∈ Ii

Ai

Aj

Fj
Fi

D(A)

∫
udFi

umin
i umax

i

[ ]



Ai

Aj

Fj
Fi

D(A)

Fk

Ak

umin
i umax

i

[ ]

[ ]

[ ]
umin

j umax
j

umax
kumin

k

A non-null intersection of intervals implies 
that alternatives are indistinguishable.



Separating sets becomes complicated when there are 
more than a few wager alternatives.

Suppose that the number of wager alternatives is integer valued 

is the interval graph associated  with G = (V,E) {Ii; i ∈ A}

An interval graph is an undirected graph such that vertices 
vi, vj ∈ V are incident if and only if           is not empty.Ii ∩ Ij

i∗ = argmaxi{umin
i }

Ii∗ is the interval having the greatest lower bound.



Lemma

With                   and                  defined as before,
              belongs to a maximal clique and is incident
to no other vertices.  

G = (V,E) {Ii; i ∈ A}
vi∗ ∈ V

Corollary

1.  A risk             where                      is not preferred
     to any risk in       .

F ∈ Ai umax
i < umin

i∗

Ai∗

2.  Any wager alternative     for which                     
     is indistinguishable from the most preferred alternative.

k umax
k ≥ umin

i∗



Ai

Aj

FjFi

D(A)

Fk

Ak

umin
i umax

i

[ ]

[ ]

[ ]
umin

j umax
j

umax
kumin

k

Clearly, alternative k is not preferred; 
alternatives i and j are indistinguishable.



umin
i = min

F∈Ai

{
∫

A
u(x)dF (x)}

umax
i = max

F∈Ai

{
∫

A
u(x)dF (x)}

Ai
Fi

D(A)

∫
udFi

umin
i umax

i

[ ]

So - where do we get these sets,               ?Ai, i ∈ A

(Note the variational structure form 
of these optimization formulations.)



Gi(y) = P{Xi
1 ≤ y1, ..., X

i
k ≤ yk, T i

1 ≤ yk+1, ..., T
i
k ≤ y2k}

{(Xi
n, T i

n);n = 0, ..., k}

∫

A
u(x)dFi(x) =

∫

Rk×Rk
+

(u ◦ Vi)(y)dGi(y)

First, note that 

where

and the reward is a finite marked point process

The separating function is simply rewritten in terms of the joint 
distribution      . Gi



umax
i = max

G∈Si

{
∫

Rk×Rk
+

(u ◦ Vi)(y)dG(y)}

umin
i = min

G∈Si

{
∫

Rk×Rk
+

(u ◦ Vi)(y)dG(y)}

umin
i umax

i

[ ]

G
Si

Gi

Two variational formulations 
for each wager alternative.

How do we solve ‘em?
(With the “heavy artillery.)



Some Observations:

In engineering, we typically synthesize alternatives, seeking 
something better.  Alternatives cost money.

The value of alternative is not know a priori know with certainty.  
We must gamble by choosing an alternative - seeking most the 
favorable risk.
It is not (practically) possible to uniquely determine the risk of any 
alternative. We can only identify a set of constraints that risk must 
satisfy.

We can, however, separate alternatives up to indistinguishability.  
This requires: 1) solving a (large) number of calculus of variations 
formulations, and 2) solving a maximal clique formulation.

Engineering wagers can be addressed in familiar computational 
territory. Modern computing offers the opportunity to overcome 
many long standing barriers arising in probability models.



Epilogue:
• The availability of high-performance computational equipment 

together with quality simulation codes is boon for engineers 
(gamblers).  Simulation codes will form the foundation of predictive 
modeling.

• Predictive models (probability law on stochastic processes) that rely 
on large codes are not always easily constructed.

• Quality of code (verification process) is a serious open issue ... 
curse of Doob’s optional sampling theorem .

• Validity is determined by the preferences of the gambler ... we 
must ensure that you don’t get garbage out when you don’t put 
garbage in.

• The optimization paradigms characterizing rational gambling are at 
least as computationally intensive as the subordinate simulation 
codes.

• Computational probability is in its infancy; much important research 
remains before it reaches it’s promise.


