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What's at stake?

The design and operation of high-consequence 
engineered systems carries considerable 
responsibilities.  We are each concerned that these 
responsibilities are appropriately addressed.

“Design and operation” are all about making risk 
encumbered decisions.  Often these decisions have 
outcomes that can be tragically expensive.

Recent advances in 
communication and computational 
technology have greatly expanded 
the role of computer-based 
models, in supporting design and 
operations.

The fidelity of analytical models 
and computer code supporting 
design and operation decisions 
must be congruent with the 
consequences of decision 
outcomes.



Computational Models and Uncertainty

Engineers employ analytical models with the singular  
purpose of decision support.  Typically, analytical 
models are grounded in physics (empirical science).  
That is, we employ mathematics (logic) to model 
observations (physics) with the purpose of inferring the 
(future) value of decision alternatives.

Computer codes implement analytical models – they are 
a model of an analytical model.  Hence, codes are a 
model of a model of the physics.

All models are fraught with uncertainty; hence, the future 
is uncertain.

Conclusion: Engineers are gamblers. They place 
audacious bets, supporting their judgement with layered 
and contingent models having an unquantifiable fidelity 
with reality.



Verification & Validation

Verification is an ongoing 
activity focused on ensuring that 
one model agrees with another 
model (e.g.,  code produces 
results that agree with an 
analytical model – bug 
elemination). 

Validation is the process of 
ensuring that a conclusion is 
correctly derived from it's primises.

Verification concerns modeling; validation concerns decisions.



Verification
Verification can never be assurred – it is not an observable state or condition.
Verification is NOT similar finding needles in a haystack.

There is no possibility of a general stopping 
rule for the verification process.

We can only claim that models agree (within 
measure of uncertainty) at specific epochs of 
observation.

It is important to recognize that models under comparison are not always 
independent of the observation process.  For example, we fix software bugs when 
we find them; yet, we may introduce new bugs when attempting to remove old ones. 

Because of the verification stopping time issue, statistical estimators measuring 
agreement among models are not available through ergodic theorems. 



Verification
Let (Ω,F , {Fn}, P ), n ∈ R be
a filtered probability space on
which an observation process
{Zn; n ∈ R} is measurable. Let
the random variable T ∗ be the
observation for which models
under comparison disagree for
the last time (i.e., one model is verified with
respect to the other). T ∗ is not a stopping time
for this filtered space.
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Validity and Decisions
• A decison is the act of selecting the from

among a set of alternatives.
• Decisions leads to an irrevocable

committment of resources.
• Decisions necessarily have consequences

(outcomes) that are uncertain.
• Decision making and gambling are, for all

practical purposes, synonomous.
• Validity = chose the best bet.
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Alternatives
• Let A = [a, b] ⊂ R contain the point 0. A is set

of possible rewards, with 0 the status quo.
• Each decision alternative α has a

corresponding reward distribution function
Fα(·) ∈ D(A).

• So which reward distribution do you like best?
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Normative wagering.
Axiom 1 (Weak Ordering) There is a preference
relation < among the elements of D(A) that is
complete and transitive.
Axiom 2 (Continuity). For every set F ∈ D(A)
the sets {G ∈ D(A) : G < F} and
{G ∈ D(A) : F < G} are closed in the topology
of weak convergence.
Axiom 3 (Independence) For all F,G,H ∈ D(A)
and all λ ∈ [0, 1], F < G implies
λF + (1 − λ)H < λG + (1 − λ)H.
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A Separation Theorem

Theorem 1 (Expected Utility Theorem.) Let < be
a binary relation on D(A). There exists a
continuous function u : A → R (unique up to
affine transformations) such that
F 7→

∫
X

u(x)dF (x) represents < if and only if
Axioms 1, 2, and 3 are satisfied.

This separation theorem is an ordinal result!
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Comment
• When the three axioms are satisfied, utility

will separate preferences in the space of
alternatives.

• One searches among the alternatives for the
one having the highest expected utility.

• Observation: Complete specification of
reward distributions is not required to
separate certain preferences using the
expected utility theorem.
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Decomposition of D(A)

• Fi ∈ D(A), i = 1, 2, ....N is the reward
distribution of the ith alternative

• u : A → R is the utility function.
• Ai ⊂ D(A) is such that Fi ∈ Ai; here, Ai is a

family of distribution functions that contains
the distribution of alternative i.
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Calculus of Variation
• umin

i = minF∈Ai
{
∫

u(x)dF (x)} and
umax

i = maxF∈Ai
{
∫

u(x)dF (x)}.

• For each decison alternative i, there is an
interval Ii = [umin

i , umax
i ] such that∫

u(x)dFi(x) ∈ Ii.

• G = (V,E) is the interval graph of the set
{Ii; i ∈ A}

• For i∗ = arg maxi{u
min
i }, Ii∗ is the interval

having the greatest lower bound.
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Lemma 1 With G = (V,E) and {Ii; i ∈ A}
defined as before, vi∗ ∈ V belongs to a maximal
clique and is incident to no other vertices.
Corollary 1 1. Any decision alternative with

distribution belonging to the set Aj with
umax

j < umin
i∗ , is less preferable than any

alternative with distribution in Ai∗.

2. Any decision alternative k for which
umax

k ≥ umin
i∗ is indistinguishable from the most

preferred alternative.
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The Physics
• Let {Y t; t ∈ R} be a stochastic analytical

model.
• Let {Tn; n ∈ N} be a sampling process.

• {Xn; n ∈ N} is the discretized model, with
Xn = Y Tn

• X = {X0, . . . , XK} finite stochastic model
supporting computation

• F (x) = P{X ≤ x} is the distribution of X.

• r : R
K+1 × R

N → R is reward.
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Utility & Computation
The marriage of physics with the expected utility
theorem is not so easily made.

Testing the validity of a decision and its
supporting models and methodologies is not
three foot putt.

E[u(r)] = E[(u ◦ r)(X)] =

∫
RN

(u ◦ r)(x)dF (x)
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Induced Sets of Distributions
• Orderings of event probabilities, conditional

probabilities, and independence between
events introduces constraints that can be
written in the canonical form
gi(F (bi1

, . . . , F (bik
)) ≤ 0,

• where gi : R
k → R is functional representation

of event probability constraints in terms of
distribution FX(x) on the random variables X.

• bij is a vector of constants ∀j.
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Induced Sets of Distributions
• Ordering constraints induce a set of

distribution functions S ∈ D(A) such that
S = {F ∈ D(A) : gi(F (bi1

, . . . , F (bik
)) ≤ 0, i =

1, . . . , n}

• The expected utility of reward associated with
this alternative is bounded and lies within a
compact interval having end points umin and
umax.
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Non—linear Programming
Utilitiy intervals over sets of distributions are
obtained by solving (large) non–linear
programming formualtions.

umin = min
F∈S

∫
RN

(u ◦ r)(x)dF (x)

and

umax = max
F∈S

∫
RN

(u ◦ r)(x)dF (x),
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